# **GROUNDWATER MONITORING STUDY**

# 14-60 CHARLOTTE STREET ROCHESTER, NEW YORK

Prepared for:

The City of Rochester

30 Church Street

Rochester, New York 14614

Prepared by:

Day Environmental, Inc.

40 Commercial Street

Rochester, New York 14614

Project No.:

3240S-03

Date:

July 2003



# TABLE OF CONTENTS

| 1.0   | INTR    | ODUCTION                                                           | 1 |
|-------|---------|--------------------------------------------------------------------|---|
| 2.0   | FIEL    | DWORK AND ANALYTICAL LABORATORY TESTING                            | 2 |
|       | 2.1     | Groundwater Evaluation                                             |   |
|       | 2.2     | Analytical Laboratory Testing                                      |   |
| 3.0   | FIND    | INGS                                                               | 4 |
|       | 3.1     | Potentiometric Map                                                 | 4 |
|       | 3.2     | Analytical Laboratory Test Results                                 | 4 |
|       | 3.3     | Comparison of Selected Cumulative Groundwater Test Results         | 5 |
| 4.0   | CONC    | CLUSIONS                                                           | 7 |
| APPE  | NDICE   | <u>es</u>                                                          |   |
| Appe  | ndix A: | Figures                                                            |   |
|       |         | Figure 1 - Project Locus Map                                       |   |
|       |         | Figure 2 - Groundwater Potentiometric Contour Map for May 27, 2003 |   |
| Apper | ndix B: | Monitoring Well Sampling Logs                                      |   |
| Apper | ndix C: | Tables & Cumulative Data Graphs                                    |   |
|       |         | Table 1 - Groundwater Analytical Laboratory Testing Program        |   |
|       |         | Table 2 - Total Petroleum Hydrocarbons (TPH)                       |   |
|       |         | Table 3 - pH Analysis                                              |   |
|       |         | Table 4 - Summary of Detected Volatile Organic Compounds (VOCs)    |   |
|       |         | Table 5 - Groundwater Elevation Data for May 27,2003               |   |
|       |         | Table 6 - Cumulative Groundwater Test Results                      |   |
| Apper | ıdix D: | Analytical Laboratory Data                                         |   |

## 1.0 INTRODUCTION

Day Environmental, Inc. (DAY) completed this Groundwater Monitoring Study at 14-60 Charlotte Street, City of Rochester, County of Monroe, New York (Site). Studies were also performed on portions of the adjoining right-of-ways of Charlotte Street and Haags Alley. The location of the Site is shown on Figure 1 (Project Locus Map, included in Appendix A).

The City of Rochester is the current owner of the Site, which is vacant land. Proposed construction plans are currently not available; however, it is anticipated that redevelopment of the Site may consist of construction of a residential complex.

The City of Rochester authorized DAY to complete this round of groundwater monitoring and sampling to evaluate groundwater quality trends in Haags Alley, located immediately north of the 14-60 Charlotte Street Site, and on the northwestern portion of the Site near Haags Alley. The City of Rochester previously installed two monitoring wells in Haags Alley south of a former off-site dry cleaning facility (MW-12), and south of a former auto repair and a former auto painting facility (MW-13) to evaluate the potential that these off-site properties may be possible sources of a petroleum-based groundwater plume that has impacted the Site. Previous groundwater sampling has confirmed elevated concentrations of contaminants in off-site wells MW-12 and MW-13. Well MW-1 located on the northwest portion of the Site was also used during this sampling event and groundwater at this location has historically contained low concentrations the chlorinated VOC tetrachloroethene.

This report summarizes the various groundwater monitoring studies conducted on May 27, 2003 in order to further evaluate groundwater quality at the Site.

## 2.0 FIELDWORK AND ANALYTICAL TESTING

This section describes the fieldwork and analytical laboratory testing conducted as part of this study.

## 2.1 Groundwater Evaluation

On May 27, 2003, a Heron oil/water interface meter (Model HO1.L) was used to measure static water levels (SWLs) in the six existing wells (MW-1, MW-4, MW-5, MW-12, MW-13 and MW-14). The static water level data was used to calculate groundwater elevations for each well, and subsequently develop a potentiometric groundwater contour map. In addition, the Heron oil/water interface meter was used at the six well locations to measure for the presence of light non-aqueous phase liquid (LNAPL). Also, headspace readings for volatile organic compounds (VOCs) were collected from the ambient air inside each well when first opened by using a MiniRae 2000 Photoionization detector (PID) equipped with a 10.6 eV lamp.

On May 27, 2003, three of the six wells (MW-1, MW-12 and MW-13) were purged by removing approximately three well casing volumes of groundwater, and a groundwater sample was subsequently collected from each well using a 3 foot disposable bailer for each and submitted for laboratory analysis (designated as samples 3240-01 [MW-1], 3240-02 [MW-12] and 3240-03 [MW-13]). Pertinent information for each well, including temperature, pH, conductivity, turbidity and oxidation reduction potential was recorded on monitoring well sampling logs, which are included in Appendix B.

# 2.2 Analytical Laboratory Testing

Groundwater samples were submitted under chain-of-custody control to Paradigm Environmental Services, Inc. (Paradigm), which is a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified analytical laboratory. The three samples (i.e., 3240-01 [MW-1], 3240-02 [MW-12] and 3240-03 [MW-13]) were analyzed for the following parameters:

- United Sates Environmental Protection Agency (USEPA) Target Compound List (TCL) and New York State Department of Environmental Conservation (NYSDEC) Spill Technology and Remediation Series (STARS)-list Volatile Organic Compounds (VOCs) using USEPA Method 8260;
- Total Petroleum Hydrocarbons (TPH) using NYSDOH Method 310.13 and;
- pH using USEPA Method 9040.

This analytical laboratory program is summarized on Table 1 included in Appendix C. A copy of the report submitted by Paradigm for the above samples and executed chain-of-custody documentation are included in Appendix D. The Monitoring Well Sampling Logs included in Appendix B indicate the following field evidence of contamination:

- A slight sheen and solvent odor were noted on purge water removed from well MW-1 during the sampling event;
- a peak PID reading of 14.8 parts per million (ppm) was measured on the ambient air inside well MW-12, and a very thin layer of petroleum and petroleum-type odors were noted on purge water removed from this well during the sampling event, and;
- a peak PID reading of 15.9 ppm was measured on the ambient air inside well MW-13, and a slight sheen and petroleum-type odors were noted on purge water removed from this well during the sampling event.

## 3.0 FINDINGS

The findings of this Groundwater Monitoring Study are summarized in this section and include a discussion on the development and interpretation of a potentiometric map, and the analytical laboratory test results compared to available regulatory and exposure assessment criteria.

# 3.1 Potentiometric Map

Well elevations were previously surveyed in relation to an assumed datum of 100.00 feet. The well elevations, static water levels, and calculated groundwater elevations measured on May 27, 2003 are presented on Table 5 included in Appendix C. The measured depths to groundwater ranged between 6.61 feet and 7.90 feet below the ground surface (i.e., below the top of the protective curb box at each well location). A copy of the potentiometric map (Figure 2) is included in Appendix A. Calculated groundwater elevations were generally highest on the western portion of the Site, and lowest on the eastern portion of the Site. As shown, groundwater for May 27, 2003 appears to generally flow toward the east. The hydraulic gradient across the Site varies between approximately 0.02 ft/ft (northwest portion of Site) and 0.01 ft/ft (southwest portion and eastern half of Site).

# 3.2 Analytical Laboratory Test Results

Copies of analytical laboratory test results for groundwater samples are included in Appendix D. Tables 1 through 4 (included in Appendix C) summarize the test results for each analyzed parameter. The tables also include a comparison of the test results to the following criteria:

- Available groundwater standards and guidance values as referenced in the NYSDEC Technical and Operational Guidance Series 1.1.1 document titled "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (TOGS 1.1.1) dated June 1998.
- Available Site-Specific Target Levels (SSTLs) for residential receptor groundwater volatilization to indoor air exposure pathway as presented in an Exposure Assessment for the Site dated June 2001 that was prepared by DAY using the RBCA Tool Kit for Chemical Releases (version 1.3). As long as the groundwater is not being used as a potable source of drinking water, this exposure pathway exhibits the most stringent set of calculated SSTLs.
- Available Contaminant Concentration Limits (CCLs) for adult residential receptor –
  groundwater volatilization to indoor air exposure pathway as presented in the NYSDEC
  document titled "Guidelines for Petroleum Spill Site Inactivation" dated February 23, 1998.
  As long as the groundwater is not being used as a potable source of drinking water, this
  exposure pathway exhibits the most stringent set of calculated CCLs.

The data and its comparison to the above criteria are summarized below:

• As shown on Table 2, medium-weight TPH identified as diesel fuel was detected in groundwater samples from wells MW-12 and MW-13 at concentrations of 74,300 ug/L or ppb and 655 ug/L or ppb, respectively. In addition, light-weight TPH identified as gasoline was detected in MW-13 at a concentration of 1,290 ug/L or ppb. TPH was not detected at concentrations above reported detection limits in the sample from MW-1. There are no NYSDEC cleanup criteria for TPH in groundwater. However, the concentration of medium-weight TPH detected in MW-12, and light-weight TPH detected in MW-13, exceeded their respective residential receptor SSTLs as referenced above.

- As shown on Table 3, pH values for wells MW-1, MW-12 and MW-13 were measured at 7.09, 6.72, and 6.98, respectively.
- TCL and STARS-list VOCs were detected above analytical laboratory detection limits in the three groundwater samples tested. The VOCs detected in groundwater samples MW-12 and MW-13 are typically associated with petroleum and/or hydrocarbon-based products (i.e., VOCs such as benzene, ethylbenzene, trimethylbenzenes, etc.). A chlorinated VOC typically associated with dry cleaning operations (e.g., tetrachloroethene) was detected in the groundwater sample collected from MW-1. Total VOC concentrations detected in the groundwater samples ranged between 14.8 ug/L or ppb (MW-1) and 502.03 ug/L or ppb (MW-13). The concentrations of one or more VOCs detected in each of the groundwater samples exceeded their respective groundwater standards or guidance values as referenced in TOGS 1.1.1. However, the concentrations of VOCs detected in each of the groundwater samples did not exceed their respective SSTLs or CCLs as referenced above.

# 3.2 Comparison of Selected Cumulative Groundwater Test Results

Cumulative analytical laboratory test results for groundwater samples collected from monitoring wells MW-1, MW-12 and MW-13 in May 2000, August 2000, December 2000 or May 2003 were compared to evaluate potential trends in contaminants present in groundwater within, or near, the right-of-way of Haags Alley. Table 6 included in Appendix C compares the types and concentrations of TPH and total VOCs detected in groundwater samples that were collected from MW-1, MW-12 and MW-13. Also included in Appendix C is graphed data for cumulative TPH and total VOC data on a per-well basis for MW-1, MW-12 and/or MW-13.

Some potential trends in data over time for these wells are provided below; however, seasonal variations, laboratory subjectivity regarding TPH identities, and the limited amount of data being compared need to be considered when interpreting this data. The cumulative data are further discussed as follows:

## MW-1

- TPH was not detected in samples from well MW-1.
- The type and concentration of VOC detected in samples from well MW-1 remained similar over time (i.e., tetrachloroethene detected at concentrations of 17 ug/l, 15.6 ug/l and 14.8 ug/l detected between May 2000 an May 2003).

## MW-12

- TPH detected in samples from well MW-12 increased significantly over time (i.e., 490 ug/l in August 2000 and 74,000 ug/l in May 2003). TPH detected in the August 2000 groundwater sample from well MW-12 was identified as light-weight gasoline. The TPH detected in the May 2003 groundwater sample from well MW-12 was identified as medium-weight diesel fuel.
- The type and concentrations of VOCs detected in samples from well MW-12 remained relatively constant with some variation (e.g., 268.39 ug/l, 129 ug/l and 246.33 ug/l total VOCs between August 2000 and May 2003).

# MW-13

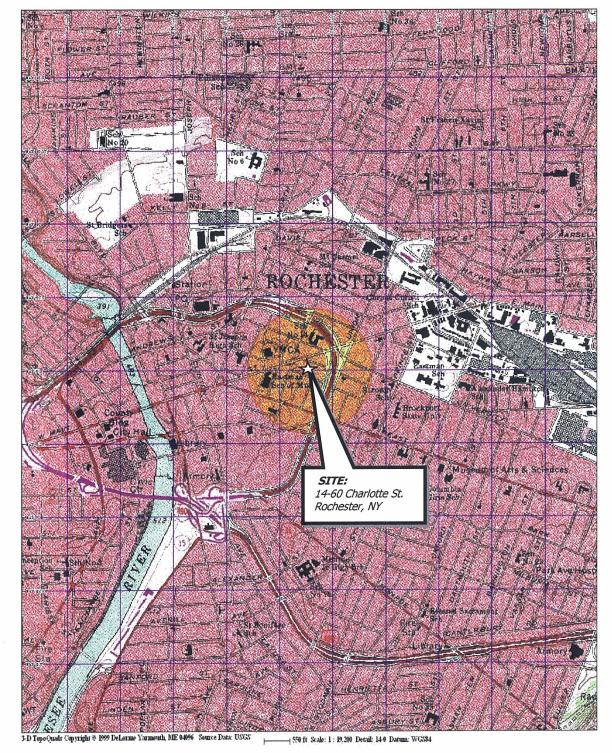
- TPH detected in samples from well MW-13 decreased slightly over time (i.e., 2,040 ug/l in December 2000 and 1,945 ug/l in May 2003). TPH detected in the December 2000 groundwater sample from well MW-13 was identified as light-weight gasoline. The TPH detected in the May 2003 groundwater sample from well MW-13 was identified as a mixture of light-weight gasoline and medium-weight diesel fuel.
- Total VOCs decreased in MW-13 over time (i.e., 743.7 ug/l in December 2000 and 502.03ug/l in May 2003).

## 4.0 CONCLUSIONS

VOCs are present in the groundwater in wells MW-1, MW-12 and MW-13 at concentrations that exceed groundwater standards and guidance values as established in NYSDEC TOGS 1.1.1. However, the concentrations of VOCs detected in these samples do not exceed residential receptor SSTLs or adult residential receptor CCLs for the groundwater volatilization to indoor air exposure pathway. Potential presence of LNAPL (slight sheen and thin layer of petroleum) was detected in three of the six wells (i.e., MW-1, MW-12 and MW-13) that were monitored as part of this study.

Based upon the testing completed on groundwater samples collected from the Site on May 27, 2003, the groundwater is contaminated with light weight TPH (identified as gasoline) and/or medium weight TPH (identified as diesel fuel). There is no NYSDEC groundwater standard or guidance value for TPH; however, the concentrations of medium-weight TPH or light-weight TPH detected in May 2003 groundwater samples from well MW-12 and well MW-13 exceed the residential receptor SSTL for the groundwater volatilization to indoor air exposure pathway.

A review of the cumulative groundwater analytical data from wells MW-1, MW-12 and MW-13 suggests that the types of VOCs detected over time at each well remains similar with some fluctuating increases or decreases in total concentrations. The cumulative TPH data suggests a potential source of medium-weight diesel fuel near Haags Alley and closest to MW-12 that was not detected in earlier samples. Further groundwater analytical laboratory testing and other investigation would need to be conducted to confirm this trend.


The highest concentration of VOCs and TPH were detected in wells MW-12 and MW-13 located off-site in Haags Alley, indicating a potential off-site source(s) of groundwater contamination. The measured depths to groundwater ranged between 6.61 feet and 7.90 feet below the ground surface, and groundwater elevations were generally highest on the western portion of the Site, and lowest on the eastern portion of the Site. Groundwater for the May 27, 2003 monitoring event appears to generally flow toward the east. Previous subsurface studies have documented that a portion of the groundwater plume in Haags Alley appears to have migrated onto and impacted the 14-60 Charlotte Street Site. Since the potential sources of off-site groundwater contamination have not been identified or mitigated, it is anticipated that the groundwater plume in Haags Alley will continue to migrate and impact the Charlotte Street Site.

Exceedances in the SSTLs suggest environmental engineering controls (EECs) may need to be designed and installed at the Site if residential redevelopment is planned. In addition, implementation of the existing environmental management plan (EMP) and health and safety plan (HASP) continues to be warranted to address proper characterization, handling, disposal and exposure control associated with this contamination. The extent and type of EECs would be dependent upon the construction details and specifications of future structures. EECs may not be warranted if the probable off-site source(s) of contaminants near Haags Alley (e.g., TPH, etc.) is adequately addressed (i.e., remediated). Future redevelopment could also proceed with a combination of remediation of contamination and design and implementation of EECs.

# APPENDIX A

Figures





Drawing Produced From: 3-D TopoQuads, DeLorme Map Co., referencing USGS quad map Rochester East (NY) 1995 and Rochester West (NY) 1995. Site Lat/Long: N43°9.50'–W77°35.90'

DATE 06-13-2003

DRAWN BY

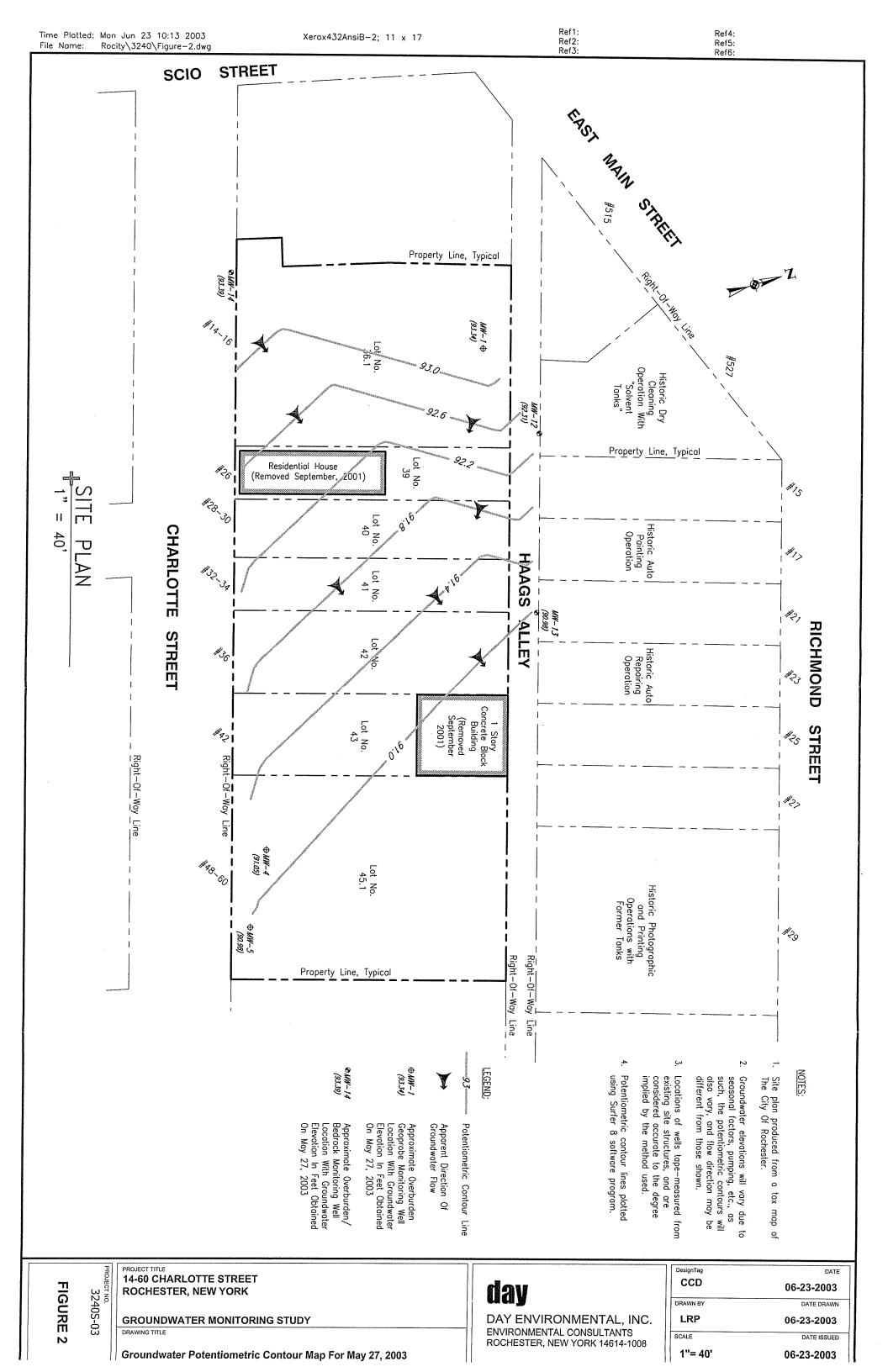
SCALE

1" = 2000'

day

DAY ENVIRONMENTAL, INC. ENVIRONMENTAL CONSULTANTS ROCHESTER, NEW YORK 14614-1008

PROJECT TITLE


14-60 CHARLOTTE STREET ROCHESTER, NY

**GROUNDWATER MONITORING STUDY** 

PROJECT LOCUS MAP

PROJECT NO. 3240S-03

FIGURE 1



# APPENDIX B Monitoring Well Sampling Logs

# DAY ENVIRONMENTAL, INC. MONITORING WELL SAMPLING LOG

# WELL MW-1

| SECTION 1 - SITE INFORMATION                                             | <b>V</b>                 |  |  |  |  |  |
|--------------------------------------------------------------------------|--------------------------|--|--|--|--|--|
| SITE LOCATION: 14-60 Charlotte Street & Haggs Alley, Rochester, New York | JOB #: <u>32408-03</u> . |  |  |  |  |  |
| PROJECT NAME: Groundwater Monitoring Study DATE: 05/27/03.               |                          |  |  |  |  |  |
| SAMPLE COLLECTOR(S): C. Davidson .                                       |                          |  |  |  |  |  |
| WEATHER CONDITIONS: Sunny ~65°F                                          | PID IN WELL (PPM):       |  |  |  |  |  |

|                                                                                                                                | SI                                                                      | ECTION 2 - I | PURGE INFORMATION                                       |                    |                    |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|---------------------------------------------------------|--------------------|--------------------|--|--|
| DEPTH OF WELL [                                                                                                                | <b>FT]:</b> 9.21                                                        |              | (MEASURED FR                                            | OM TOP OF CASING   | - T.O.C.)          |  |  |
|                                                                                                                                |                                                                         |              |                                                         |                    |                    |  |  |
| STATIC WATER LI                                                                                                                | EVEL (SWL) [FT]:                                                        | 7.31         | (MEASURED FR                                            | OM T.O.C.)         |                    |  |  |
| THICKNESS OF WA                                                                                                                | ATER COLUMN [FT]:                                                       | 1.90         | (DEPTH OF                                               | WELL - SWL)        |                    |  |  |
| CALCULATED VOI                                                                                                                 | L. OF H <sub>2</sub> O PER WELL                                         | CASING [G    | <b>AL]:</b> 0.07                                        | CASING DIA.:       | 1".                |  |  |
| CALCULATIONS:<br>CASING DIA. (FT)<br>3/" (0.0625)<br>1" (0.0833)<br>11/4" (0.1041)<br>2" (0.1667)<br>3" (0.250)<br>4" (0.3333) | WELL CONSTANT(0<br>0.023<br>0.041<br>0.063<br>0.1632<br>0.380<br>0.6528 |              | CALCULATIONS<br>OL. OF H <sub>2</sub> O IN CASING = DEP | TH OF WATER COLUMN | X WELL CONSTANT    |  |  |
| 4½" (0.375)<br>6" (0.5000)<br>8" (0.666)                                                                                       | 0.8326<br>1.4688<br>2.611                                               |              |                                                         |                    |                    |  |  |
| CALCULATED PURGE VOLUME [GAL]: 0.23 (3 TIMES CASING VOLUME)                                                                    |                                                                         |              |                                                         |                    |                    |  |  |
| ACTUAL VOLUME PURGED [GAL]:~0.25                                                                                               |                                                                         |              |                                                         |                    |                    |  |  |
| PURGE METHOD:                                                                                                                  | 3' disposable bailer                                                    |              | PURGE STA                                               | RT: 1305           | <b>END:</b> 1515 . |  |  |

| SECTION 3 - SAMPLE IDENTIFICATION AND TEST PARAMETERS |               |                      |                    |  |  |  |  |  |
|-------------------------------------------------------|---------------|----------------------|--------------------|--|--|--|--|--|
| SAMPLE ID #                                           | DATE / TIME   | SAMPLING METHOD      | ANALYTICAL SCAN(S) |  |  |  |  |  |
| DAXV 1                                                | 5/27/03 15:00 | 2' diamagahla hailan | TPH 310.13; pH and |  |  |  |  |  |
| MW-1                                                  | 3/2//03 13.00 | 3' disposable bailer | 8260 TCL + STARS   |  |  |  |  |  |

| SECTION 4 – WATER QUALITY DATA |         |                      |                    |             |                            |                    |  |
|--------------------------------|---------|----------------------|--------------------|-------------|----------------------------|--------------------|--|
| SWL (FT) TEMP (°C) pH          |         | CONDUCTIVITY (μS/cm) | TURBIDITY<br>(NTU) | ORP<br>(mV) | VISUAL                     |                    |  |
| 7.31                           | 15.2 NC | NC                   | 3.35               | >990        | 336                        | Light Brown, Murky |  |
| /.31                           |         | 3.33                 | 7990               | 330         | Slight Sheen, Solvent odor |                    |  |

NC = Not Collected

# DAY ENVIRONMENTAL, INC. MONITORING WELL SAMPLING LOG

# WELL MW-12

| SECTION 1 - SITE INFORMATION                                             |                           |  |  |  |  |  |  |
|--------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|
| SITE LOCATION: 14-60 Charlotte Street & Haggs Alley, Rochester, New York | <b>JOB #:</b> 3240S-03.   |  |  |  |  |  |  |
| PROJECT NAME: Groundwater Monitoring Study                               | <b>DATE</b> : 05/27/03.   |  |  |  |  |  |  |
| SAMPLE COLLECTOR(S): C. Davidson .                                       |                           |  |  |  |  |  |  |
| WEATHER CONDITIONS: Cloudy ~60°F                                         | PID IN WELL (PPM): 14.8 . |  |  |  |  |  |  |

|                                                                                                                                    |                                                                         | SECTION 2     | 2 - PURGE INFORMATION                  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------|----------------------------------------|--|--|--|--|--|
| DEPTH OF WELL [                                                                                                                    | FT]:1                                                                   | 2.05          | (MEASURED FROM TOP OF CASING - T.O.C.) |  |  |  |  |  |
| STATIC WATER LEVEL (SWL) [FT]: 7.01 (MEASURED FROM T.O.C.)                                                                         |                                                                         |               |                                        |  |  |  |  |  |
| THICKNESS OF WA                                                                                                                    | THICKNESS OF WATER COLUMN [FT]: 5.04 (DEPTH OF WELL - SWL)              |               |                                        |  |  |  |  |  |
| CALCULATED VOI                                                                                                                     | L. OF H <sub>2</sub> O PER                                              | R WELL CASING | [GAL]: 0.8 CASING DIA.: 2"             |  |  |  |  |  |
| CALCULATIONS: CASING DIA. (FT)  '4" (0.0625) 1" (0.0833) 1'4" (0.1041) 2" (0.1667) 3" (0.250) 4" (0.3333) 4'2" (0.375) 6" (0.5000) | 0.023<br>0.041<br>0.063<br>0.1632<br>0.380<br>0.6528<br>0.826<br>1.4688 | STANT(GAL/FT) |                                        |  |  |  |  |  |
| 8" (0.666) 2.611  CALCULATED PURGE VOLUME [GAL]: 2.5 (3 TIMES CASING VOLUME)  ACTUAL VOLUME PURGED [GAL]: ~2.5 .                   |                                                                         |               |                                        |  |  |  |  |  |
| PURGE METHOD:                                                                                                                      | 3' disposable                                                           | bailer        | PURGE START: 1335 END: 1343 .          |  |  |  |  |  |

| SECTION 3 - SAMPLE IDENTIFICATION AND TEST PARAMETERS |               |                      |                    |  |  |  |  |  |
|-------------------------------------------------------|---------------|----------------------|--------------------|--|--|--|--|--|
| SAMPLE ID #                                           | DATE / TIME   | SAMPLING METHOD      | ANALYTICAL SCAN(S) |  |  |  |  |  |
| MW-12                                                 | 5/27/03 13:50 | 3' disposable bailer | TPH 310.13; pH and |  |  |  |  |  |
| IVI W - 12                                            | 3/2//03 13.50 | 3 disposable batter  | 8260 TCL + STARS   |  |  |  |  |  |

|          | SECTION 4 – WATER QUALITY DATA |    |                      |                    |             |                                                                                                          |  |  |  |
|----------|--------------------------------|----|----------------------|--------------------|-------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| SWL (FT) | TEMP<br>(°C)                   | pН | CONDUCTIVITY (μS/cm) | TURBIDITY<br>(NTU) | ORP<br>(mV) | VISUAL                                                                                                   |  |  |  |
| 7.01     | 14.8                           | NC | 1.49                 | >990               | -64         | Brown to Green Murky. Strong petroleum odor, very thin layer of petroluem on water (dark brown in color) |  |  |  |

NC = Not Collected

# DAY ENVIRONMENTAL, INC. MONITORING WELL SAMPLING LOG

# WELL MW-13

| SECTION 1 - SITE INFORMATIO                                              | <b>N</b>                |
|--------------------------------------------------------------------------|-------------------------|
| SITE LOCATION: 14-60 Charlotte Street & Haggs Alley, Rochester, New York | <b>JOB #:</b> 3240S-03. |
| PROJECT NAME: Groundwater Monitoring Study                               | <b>DATE</b> : 05/27/03. |
| SAMPLE COLLECTOR(S): C. Davidson .                                       |                         |
| WEATHER CONDITIONS: Cloudy ~60°F                                         | PID IN WELL (PPM):15.9  |

|                                                            | CIT                                                                     | CTION     | DID OF INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                            | Sr                                                                      | SCHON 2 - | PURGE INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| DEPTH OF WELL [                                            | <b>DEPTH OF WELL [FT]:</b> 14.46 (MEASURED FROM TOP OF CASING - T.O.C.) |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            | •                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| STATIC WATER LE                                            | EVEL (SWL) [FT]:                                                        | 6.86      | (MEASURED FROM T.O.C.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                            |                                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| THICKNESS OF WA                                            | ATER COLUMN [FT]:                                                       | 7.60      | (DEPTH OF WELL - SWL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CALCIII ATED VOI                                           | OF HOPER WELL                                                           | CASING    | GAL]: 1.2 CASING DIA.: 2" .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| CALCULATED VOI                                             | 2. Of H <sub>2</sub> O LER WELL                                         | CASHIO    | CASING DIA 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| CALCULATIONS:                                              |                                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| CASING DIA. (FT)                                           | WELL CONSTANT(                                                          | GAL/FT)   | CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| <sup>3</sup> / <sub>4</sub> " (0.0625)                     | 0.023                                                                   |           | VOL. OF H <sub>2</sub> O IN CASING = DEPTH OF WATER COLUMN X WELL CONSTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 1" (0.0833)                                                | 0.041                                                                   |           | To be also to the second of th |  |  |  |
| 1¼" (0.1041)                                               | 0.063                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 2" (0.1667)                                                | 0.1632                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 3" (0.250)                                                 | 0.380                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 4" (0.3333)                                                | 0.6528                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 4½" (0.375)                                                | 0.826                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            | 1.4688                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 8" (0.666)                                                 | 2.611                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| CALCULATED PURGE VOLUME [GAL]: 3.6 (3 TIMES CASING VOLUME) |                                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| ACTUAL VOLUME                                              | PURGED [GAL]:~                                                          | 5.6       | <del>.</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| PURGE METHOD:                                              | 3' disposable bailer                                                    |           | PURGE START: 1416 END: 1430 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

| SECTION 3 - SAMPLE IDENTIFICATION AND TEST PARAMETERS |               |                      |                    |  |  |  |  |  |
|-------------------------------------------------------|---------------|----------------------|--------------------|--|--|--|--|--|
| SAMPLE ID#                                            | DATE / TIME   | SAMPLING METHOD      | ANALYTICAL SCAN(S) |  |  |  |  |  |
| MW-13                                                 | 5/27/03 14:30 | 3' disposable bailer | TPH 310.13; pH and |  |  |  |  |  |
| WW-13                                                 | 3/2//03 11.30 | 3 disposable baller  | 8260 TCL + STARS   |  |  |  |  |  |

| The state of the s |              |    | SECTION 4 – WA       | ATER QUALITY       | DATA        |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|----------------------|--------------------|-------------|----------------------------------------|
| SWL (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TEMP<br>(°C) | pН | CONDUCTIVITY (μS/cm) | TURBIDITY<br>(NTU) | ORP<br>(mV) | VISUAL                                 |
| 6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.2         | NC | 1.89                 | 570                | -70         | Clear, Petroleum odor,<br>Slight Sheen |

NC = Not Collected

# APPENDIX C

**Tables & Cumulative Data Graphs** 

TABLE 1

# 14-60 CHARLOTTE STREET ROCHESTER, NEW YORK

# GROUNDWATER ANALYTICAL LABORATORY TESTING PROGRAM

| Well Location | Sample Date | Sample Number | Analysis       |
|---------------|-------------|---------------|----------------|
| MW-1          | 05/27/03    | 3240-01       | 8260/310.13/pH |
|               |             |               |                |
| MW-12         | 05/27/03    | 3240-02       | 8260/310.13/pH |
|               |             |               |                |
| MW-13         | 05/27/03    | 3240-03       | 8260/310.13/pH |
|               |             |               |                |

USEPA Method 8260 used to test for TCL and STARS-list volatile organic compounds. NYSDOH Method 310.13 used to test for total petroleum hydrocarbons (TPH).

# 14-60 CHARLOTTE STREET ROCHESTER, NEW YORK

# TOTAL PETROLEUM HYDROCARBONS (TPH) IN UG/L OR PARTS PER BILLION (PPB)

# MAY 27, 2003 GROUNDWATER SAMPLES

| Sample Location | Sample Designation | Sample Designation TPH Test Results (PPB)        | Residential Receptor SSTL for Groundwater<br>Volatilization to Indoor Air (ppb) <sup>(1)</sup> |
|-----------------|--------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------|
| MW-1            | 3240-01            | -                                                |                                                                                                |
| MW-12           | 3240-02            | 74,300 - MW (diesel fuel)                        | 22,000 (MW C10-C12 aromatic hydrocarbons)                                                      |
| MW-13           | 3240-03            | 1,290 - LW (gasoline);<br>655 - MW (diesel fuel) | 310 (LW C8-C10 aliphatic hydrocarbons) 22,000 (MW C10-C12 aromatic hydrocarbons)               |

LW MW (1)

Not detected above reported laboratory detection limit values.
 Light Weight
 Medium Weight
 Most stringent calculated Site-Specific Target Level for TPH type referenced in June 2001 Exposure Assessment prepared by DAY.

TABLE 3

# 14-60 CHARLOTTE STREET ROCHESTER, NEW YORK

# pH ANALYSIS

# MAY 27, 2003 GROUNDWATER SAMPLES

| SAMPLE LOCATION | SAMPLE DESIGNATION | pH TEST RESULTS |
|-----------------|--------------------|-----------------|
| MW-1            | 3240-01            | 7.09            |
| MW-12           | 3240-02            | 6.72            |
| MW-13           | 3240-03            | 86.9            |

# 14-60 CHARLOTTE STREET ROCHESTER, NEW YORK

# VOLATILE ORGANIC COMPOUNDS (VOCs) IN UG/L OR PARTS PER BILLION (PPB) SUMMARY OF DETECTED

# MAY 27, 2003 GROUNDWATER SAMPLES

| DETECTED VOCs          | 3240-01/<br>MW-1 | 3240-02/<br>MW-12 | 3240-03/<br>MW-13 | NYSDEC TOGS 1.1.1 GW Standards and Guidance Values (ppb) (1) | Residential Receptor<br>SSTL for GW Vol. to<br>IA - (ppb) <sup>(2)</sup> | Adult Residential Receptor CCLs for GW Vol. to IA (ppb) (3) |
|------------------------|------------------|-------------------|-------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|
| Benzene                | 1                | 8.24              | 3.84              | _                                                            | 24                                                                       | 49.6                                                        |
| Ethylbenzene           | -                | 7.04              | 10.7              | 5                                                            | 77,000                                                                   | 152000                                                      |
| Total Xylenes          | -                | 5.37              | 14.58             | 5                                                            | >200,000                                                                 | 55,000                                                      |
| Isopropylbenzene       | 1                | 10.6              | 58.6              | 5                                                            | NA                                                                       | AN.                                                         |
| n- Butylbenzene        | ı                | -                 | 14.0              | 5                                                            | NA                                                                       | AN                                                          |
| n-Propylbenzene        | 1                | 17.2              | 0.66              | 5                                                            | NA                                                                       | NA<br>NA                                                    |
| 1,2,4-Trimethylbenzene | !                | 42.7              | 266               | 5                                                            | NA                                                                       | 38,000                                                      |
| p-Isopropyltoluene     | 1                | 5.58              | 3.91              | 5                                                            | NA                                                                       | AZ.                                                         |
| sec-Butylbenzene       | 1                | 17.3              | 28.3              | 5                                                            | NA                                                                       | AN                                                          |
| Naphthalene            | 1                | 130               | -                 | 10                                                           | >31,000                                                                  | 7,420                                                       |
| Tetrachloroethene      | 14.8             | ***               | -                 | 5                                                            | 160                                                                      | Ŋ                                                           |
| cis-1,2-Dichloroethene | 1                | 2.30              | 3.10              | 5                                                            | NA                                                                       | NA                                                          |
| Total VOCs             | 14.8             | 246.33            | 502.03            | NA                                                           | NA                                                                       | NA                                                          |

= Not detected above reported laboratory detection limit value.

= Not available.

= Indoor Air

= Groundwater

= Volatilization

= Groundwater Standards and Guidance Values referenced in June 1998 NYSDEC Division of Water TOGS (1.1.1) Ambient.

-- NA IA GW Vol. (1) (2) (3)

= Site-Specific Target Levels referenced in June 2001 Exposure Assessment prepared by DAY.

= Contaminant Concentration Limits referenced in NYSDEC document titled "Guidelines for Petroleum Spill Inactivation dated February 23, 1998.

# 14 – 60 CHARLOTTE STREET ROCHESTER, NEW YORK

# **GROUNDWATER ELEVATION DATA FOR MAY 27, 2003**

| WELL ID | CURB BOX<br>ELEVATION<br>(FT) | ELEVATION OF<br>PVC WELL<br>CASING (FT) | STATIC WATER<br>LEVEL (SWL)<br>MEASUREMENT (FT) | GROUNDWATER<br>ELEVATION (FT) |
|---------|-------------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------|
| MW-1    | 100.93                        | 100.65                                  | 7.31                                            | 93.34                         |
| MW-4    | 97.66                         | 97.36                                   | 6.31                                            | 91.05                         |
| MW-5    | 97.60                         | 97.41                                   | 6.43                                            | 90.98                         |
| MW-12   | 99.67                         | 99.32                                   | 7.01                                            | 92.31                         |
| MW-13   | 98.10                         | 97.84                                   | 6.86                                            | 90.98                         |
| MW-14   | 101.29                        | 101.00                                  | 7.61                                            | 93.39                         |

NOTES: Elevations based on assumed Project Benchmark elevation of 100.00 feet

Free oil product was not detected in any of the wells during measurements taken on May 27, 2003 using an oil/water interface probe

# 14-60 CHARLOTTE STREET ROCHESTER, NEW YORK

# CUMULATIVE GROUNDWATER TEST RESULTS IN UG/L OR PARTS PER BILLION (PPB)

# MONITORING WELLS MW-1, MW-12 & MW-13

| Sample   |          |                   | ТРН                |                                             |             | Tota           | al VOCs          |          |
|----------|----------|-------------------|--------------------|---------------------------------------------|-------------|----------------|------------------|----------|
| Location | May 2000 | August<br>2000    | December<br>2000   | May<br>2003                                 | May<br>2000 | August<br>2000 | December<br>2000 | May 2003 |
| MW-1     |          | NC                |                    |                                             | 17          | NC             | 15.6             | 14.8     |
| MW-12    | NC       | 490 LW (gasoline) |                    | 74300 MW (diesel fuel)                      | NC          | 268.39         | 129              | 246.33   |
| MW-13    | NC       | NC                | 2040 LW (gasoline) | 1290 LW (gasoline);<br>655 MW (diesel fuel) | NC          | NC             | 743.7            | 502.03   |

= Not detected above reported analytical laboratory detection limit values.

= Light Weight LW MW

= Medium Weight = Total petroleum hydrocarbons TPH VOCs = Volatile organic compounds

= Not collected NC

May 2003 There andr JD4538. rev. Dec 2000 TPH MW-12 - Haags Alley Aug 2000 **Date** Jul 2000 May 2000 ug/l 40000— 10000 上00008 70000 -00009 30000 20000 0 -00009

May 2003 2040 Dec 2000 Aug 2000 **Date** Jul 2000 May 2000 2040一 1/**g**n (qdd) 1900-1880 1940-1920-2000 1980-2020 -

TPH MW-13 - Haags Alley

May 2003 Dec 2000 Aug 2000 **Date** Jul 2000 May 2000 16.5 14.5 16 15.5 15 14 (qdd)

Total VOCs MW-1 - 14-60 Charlotte St.

246.33 May 2003 Dec 2000 Aug 2000 **Date** Jul 2000 May 2000 ug/l 150-3007 250-200-<del>-0</del>2 100

Total VOCs MW-12 - Haags Alley

May 2003 Dec 2000 Aug 2000 **Date** Jul 2000 May 2000 300 100 ug/l 400-200--009 -009 800 700

Total VOCs MW-13 - Haags Alley

# APPENDIX D

**Analytical Laboratory Data** 



# PHC Analysis Report for Non-potable Water

Client: <u>Day Environmental Inc</u>

Client Job Site: RoCity

Lab Project Number: 03-1393

Lab Sample Number: 5103

Client Job Number: 3240S-03

Field Location: MW-1
Field ID Number: 3240-01

Date Sampled:

05/27/2003

0-01 Date Received: ter Date Analyzed: 05/27/2003 05/29/2003

Sample Type: Water Date

PHC Classification Results in ug / L

Petroleum Hydrocarbon ND< 250

ELAP Number 10958 Method: NYSDOH 310.13

Comments:

ND denotes Non Detect ug / L = microgram per Liter PHC = Petroleum Hydrocarbon

Signature:



# PHC Analysis Report for Non-potable Water

Client: Day Environmental Inc

Client Job Site: RoCity Lab Project Number: 03-1393

Lab Sample Number: 5104

Client Job Number: 3240S-03

Field Location:MW-12Date Sampled:05/27/2003Field ID Number:3240-02Date Received:05/27/2003Sample Type:WaterDate Analyzed:05/29/2003

PHC Classification Results in ug / L

Medium Weight PHC as:
Diesel Fuel 74,300

ELAP Number 10958 Method: NYSDOH 310.13

Comments:

ND denotes Non Detect ug / L = microgram per Liter PHC = Petroleum Hydrocarbon

Signature:



# PHC Analysis Report for Non-potable Water

Client: Day Environmental Inc

Client Job Site: RoCity Lab Project Number: 03-1393

Lab Sample Number: 5105

Client Job Number: 3240S-03

Field Location:MW-13Date Sampled:05/27/2003Field ID Number:3240-03Date Received:05/27/2003Sample Type:WaterDate Analyzed:05/29/2003

| PHC Classification                   | Results in ug / L |  |
|--------------------------------------|-------------------|--|
| Light Weight PHC as:<br>Gasoline     | 1,290             |  |
| Medium Weight PHC as:<br>Diesel Fuel | 655               |  |

ELAP Number 10958 Method: NYSDOH 310.13

Comments: ND denotes Non Detect

ug / L = microgram per Liter PHC = Petroleum Hydrocarbon

Signature:



# Volatile Analysis Report for Non-potable Water

Client: Day Environmental, Inc.

Client Job Site:

RoCity

Lab Project Number:

03-1393

Client Job Number:

3240S-03

Lab Sample Number: 5103

Field Location:

MW-1

Date Sampled:

05/27/2003

Field ID Number: Sample Type:

3240-01 Water

Date Received:

05/27/2003

Date Analyzed:

06/02/2003

| Halocarbons               | Results in ug / L |
|---------------------------|-------------------|
| Bromodichloromethane      | ND< 2.00          |
| Bromomethane              | ND< 2.00          |
| Bromoform                 | ND< 2.00          |
| Carbon tetrachloride      | ND< 2.00          |
| Chloroethane              | ND< 2.00          |
| Chloromethane             | ND< 2.00          |
| 2-Chloroethyl vinyl ether | ND< 2.00          |
| Chloroform                | ND< 2.00          |
| Dibromochloromethane      | ND< 2.00          |
| 1,1-Dichloroethane        | ND< 2.00          |
| 1,2-Dichloroethane        | ND< 2.00          |
| 1,1-Dichloroethene        | ND< 2.00          |
| cis-1,2-Dichloroethene    | ND< 2.00          |
| trans-1,2-Dichloroethene  | ND< 2.00          |
| 1,2-Dichloropropane       | ND< 2.00          |
| cis-1,3-Dichloropropene   | ND< 2.00          |
| trans-1,3-Dichloropropene | ND< 2.00          |
| Methylene chloride        | ND< 5.00          |
| 1,1,2,2-Tetrachloroethane | ND< 2.00          |
| Tetrachloroethene         | 14.8              |
| 1,1,1-Trichloroethane     | ND< 2.00          |
| 1,1,2-Trichloroethane     | ND< 2.00          |
| Trichloroethene           | ND< 2.00          |
| Trichlorofluoromethane    | ND< 2.00          |
| Vinyl Chloride            | ND< 2.00          |

| Aromatics           | Results in ug / L |
|---------------------|-------------------|
| Benzene             | ND< 0.700         |
| Chlorobenzene       | ND< 2.00          |
| Ethylbenzene        | ND< 2.00          |
| Toluene             | ND< 2.00          |
| m,p - Xylene        | ND< 2.00          |
| o - Xylene          | ND< 2.00          |
| Styrene             | ND< 2.00          |
| 1,2-Dichlorobenzene | ND< 2.00          |
| 1,3-Dichlorobenzene | ND< 2.00          |
| 1,4-Dichlorobenzene | ND< 2.00          |

| Ketones              | Results in ug / L |
|----------------------|-------------------|
| Acetone              | ND< 10.0          |
| 2-Butanone           | ND< 5.00          |
| 2-Hexanone           | ND< 5.00          |
| 4-Methyl-2-pentanone | ND< 5.00          |

| Miscellaneous    | Results in ug / L |
|------------------|-------------------|
| Carbon disulfide | ND< 5.00          |
| Vinyl acetate    | ND< 5.00          |
|                  |                   |
|                  |                   |
|                  |                   |
|                  |                   |
|                  |                   |

ELAP Number 10958 Method: EPA 8260B Data File: 65503.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:



# Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Day Environmental, Inc.

Client Job Site: RoCity Lab Project Number: 03-1393

Lab Sample Number: 5103

Client Job Number: 3240S-03

Field Location:MW-1Date Sampled:05/27/2003Field ID Number:3240-01Date Received:05/27/2003Sample Type:WaterDate Analyzed:06/02/2003

| Aromatics          | Results in ug / L | Aromatics               | Results in ug / L |
|--------------------|-------------------|-------------------------|-------------------|
| n-Butylbenzene     | ND< 2.00          | 1,2,4-Trimethylbenzene  | ND< 2.00          |
| sec-Butylbenzene   | ND< 2.00          | 1,3,5-Trimethylbenzene  | ND< 2.00          |
| tert-Butylbenzene  | ND< 2.00          |                         |                   |
| n-Propylbenzene    | ND< 2.00          | Miscellaneous           |                   |
| Isopropylbenzene   | ND< 2.00          | Methyl tert-Butyl Ether | ND< 2.00          |
| p-Isopropyltoluene | ND< 2.00          |                         |                   |
| Naphthalene        | ND< 5.00          |                         |                   |

ELAP Number 10958 Method: EPA 8260B Data File: 65503.D

Comments: ND denotes Non Detect

ug / L = microgram per Liter

Signature:



# Volatile Analysis Report for Non-potable Water

Client: Day Environmental, Inc.

Lab Project Number: 03-1393 Client Job Site: RoCity

Lab Sample Number: 5104

Client Job Number: 3240S-03 MW-12 Field Location:

Date Sampled: 05/27/2003 Field ID Number: 3240-02 Date Received: 05/27/2003 06/03/2003 Date Analyzed: Water Sample Type:

| Halocarbons               | Results in ug / L |
|---------------------------|-------------------|
| Bromodichloromethane      | ND< 2.00          |
| Bromomethane              | ND< 2.00          |
| Bromoform                 | ND< 2.00          |
| Carbon tetrachloride      | ND< 2.00          |
| Chloroethane              | ND< 2.00          |
| Chloromethane             | ND< 2.00          |
| 2-Chloroethyl vinyl ether | ND< 2.00          |
| Chloroform                | ND< 2.00          |
| Dibromochloromethane      | ND< 2.00          |
| 1,1-Dichloroethane        | ND< 2.00          |
| 1,2-Dichloroethane        | ND< 2.00          |
| 1,1-Dichloroethene        | ND< 2.00          |
| cis-1,2-Dichloroethene    | 2.30              |
| trans-1,2-Dichloroethene  | ND< 2.00          |
| 1,2-Dichloropropane       | ND< 2.00          |
| cis-1,3-Dichloropropene   | ND< 2.00          |
| trans-1,3-Dichloropropene | ND< 2.00          |
| Methylene chloride        | ND< 5.00          |
| 1,1,2,2-Tetrachloroethane | ND< 2.00          |
| Tetrachloroethene         | ND< 2.00          |
| 1,1,1-Trichloroethane     | ND< 2.00          |
| 1,1,2-Trichloroethane     | ND< 2.00          |
| Trichloroethene           | ND< 2.00          |
| Trichlorofluoromethane    | ND< 2.00          |
| Vinyl Chloride            | ND< 2.00          |

| Aromatics           | Results in ug / L |
|---------------------|-------------------|
| Benzene             | 8.24              |
| Chlorobenzene       | ND< 2.00          |
| Ethylbenzene        | 7.04              |
| Toluene             | ND< 2.00          |
| m,p - Xylene        | 2.86              |
| o - Xylene          | 2.51              |
| Styrene             | ND< 2.00          |
| 1,2-Dichlorobenzene | ND< 2.00          |
| 1,3-Dichlorobenzene | ND< 2.00          |
| 1,4-Dichlorobenzene | ND< 2.00          |

| Ketones              | Results in ug / L |  |
|----------------------|-------------------|--|
| Acetone              | ND< 10.0          |  |
| 2-Butanone           | ND< 5.00          |  |
| 2-Hexanone           | ND< 5.00          |  |
| 4-Methyl-2-pentanone | ND< 5.00          |  |

| Miscellaneous    | Results in ug / L |  |
|------------------|-------------------|--|
| Carbon disulfide | ND< 5.00          |  |
| Vinyl acetate    | ND< 5.00          |  |
|                  |                   |  |
|                  |                   |  |
|                  |                   |  |
|                  |                   |  |
|                  |                   |  |

Data File: 65531.D ELAP Number 10958 Method: EPA 8260B

Comments: ND denotes Non Detect

ug / L = microgram per Liter

Signature:



# Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Day Environmental, Inc.

Client Job Site: RoCity Lab Project Number: 03-1393

Lab Sample Number: 5104

Client Job Number: 3240S-03

Field Location:MW-12Date Sampled:05/27/2003Field ID Number:3240-02Date Received:05/27/2003Sample Type:WaterDate Analyzed:06/03/2003

| Aromatics          | Results in ug / L | Aromatics               | Results in ug / L |
|--------------------|-------------------|-------------------------|-------------------|
| n-Butylbenzene     | ND< 2.00          | 1,2,4-Trimethylbenzene  | 42.7              |
| sec-Butylbenzene   | 17.3              | 1,3,5-Trimethylbenzene  | ND< 2.00          |
| tert-Butylbenzene  | ND< 2.00          |                         |                   |
| n-Propylbenzene    | 17.2              | Miscellaneous           |                   |
| Isopropylbenzene   | 10.6              | Methyl tert-Butyl Ether | ND< 2.00          |
| p-Isopropyltoluene | 5.58              |                         |                   |
| Naphthalene        | 130               |                         |                   |

ELAP Number 10958 Method: EPA 8260B Data File: 65531.D

Comments: ND denotes Non Detect

ug / L = microgram per Liter

Signature:



# Volatile Analysis Report for Non-potable Water

Client: Day Environmental, Inc.

Client Job Site: RoCity Lab Project Number: 03-1393

Lab Sample Number: 5105

Client Job Number: 3240S-03

Field Location:MW-13Date Sampled:05/27/2003Field ID Number:3240-03Date Received:05/27/2003Sample Type:WaterDate Analyzed:06/03/2003

| Halocarbons               | Results in ug / L |
|---------------------------|-------------------|
| Bromodichloromethane      | ND< 2.00          |
| Bromomethane              | ND< 2.00          |
| Bromoform                 | ND< 2.00          |
| Carbon tetrachloride      | ND< 2.00          |
| Chloroethane              | ND< 2.00          |
| Chloromethane             | ND< 2.00          |
| 2-Chloroethyl vinyl ether | ND< 2.00          |
| Chloroform                | ND< 2.00          |
| Dibromochloromethane      | ND< 2.00          |
| 1,1-Dichloroethane        | ND< 2.00          |
| 1,2-Dichloroethane        | ND< 2.00          |
| 1,1-Dichloroethene        | ND< 2.00          |
| cis-1,2-Dichloroethene    | 3.10              |
| trans-1,2-Dichloroethene  | ND< 2.00          |
| 1,2-Dichloropropane       | ND< 2.00          |
| cis-1,3-Dichloropropene   | ND< 2.00          |
| trans-1,3-Dichloropropene | ND< 2.00          |
| Methylene chloride        | ND< 5.00          |
| 1,1,2,2-Tetrachloroethane | ND< 2.00          |
| Tetrachloroethene         | ND< 2.00          |
| 1,1,1-Trichloroethane     | ND< 2.00          |
| 1,1,2-Trichloroethane     | ND< 2.00          |
| Trichloroethene           | ND< 2.00          |
| Trichlorofluoromethane    | ND< 2.00          |
| Vinyl Chloride            | ND< 2.00          |

| Aromatics           | Results in ug / L |
|---------------------|-------------------|
| Benzene             | 3.84              |
| Chlorobenzene       | ND< 2.00          |
| Ethylbenzene        | 10.7              |
| Toluene             | ND< 2.00          |
| m,p - Xylene        | 9.43              |
| o - Xylene          | 5.15              |
| Styrene             | ND< 2.00          |
| 1,2-Dichlorobenzene | ND< 2.00          |
| 1,3-Dichlorobenzene | ND< 2.00          |
| 1,4-Dichlorobenzene | ND< 2.00          |

| Ketones              | Results in ug / L |  |
|----------------------|-------------------|--|
| Acetone              | ND< 10.0          |  |
| 2-Butanone           | ND< 5.00          |  |
| 2-Hexanone           | ND< 5.00          |  |
| 4-Methyl-2-pentanone | ND< 5.00          |  |

| Miscellaneous    | Results in ug / L |
|------------------|-------------------|
| Carbon disulfide | ND< 5.00          |
| Vinyl acetate    | ND< 5.00          |
|                  |                   |
|                  |                   |
|                  |                   |
|                  |                   |
|                  |                   |

ELAP Number 10958 Method: EPA 8260B Data File: 65528.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:



# Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Day Environmental, Inc.

Client Job Site: RoCity Lab Project Number: 03-1393

Lab Sample Number: 5105

Client Job Number: 3240S-03

Field Location:MW-13Date Sampled:05/27/2003Field ID Number:3240-03Date Received:05/27/2003Sample Type:WaterDate Analyzed:06/03/2003

| Aromatics          | Results in ug / L | Aromatics               | Results in ug / L |
|--------------------|-------------------|-------------------------|-------------------|
| n-Butylbenzene     | 14.0              | 1,2,4-Trimethylbenzene  | 266               |
| sec-Butylbenzene   | 28.3              | 1,3,5-Trimethylbenzene  | ND< 2.00          |
| tert-Butylbenzene  | ND< 2.00          |                         |                   |
| n-Propylbenzene    | 99.0              | Miscellaneous           |                   |
| Isopropylbenzene   | 58.6              | Methyl tert-Butyl Ether | ND< 2.00          |
| p-Isopropyltoluene | 3.91              |                         |                   |
| Naphthalene        | ND< 5.00          |                         |                   |

ELAP Number 10958 Method: EPA 8260B Data File: 65528.D

Comments: ND denotes Non Detect

ug / L = microgram per Liter

Signature:



# pH Analysis Report

Client: <u>Day Environmental, Inc.</u>

Client Job Site: RoCity Lab Project Number: 03-1393

Client Job Number: 3240S-03

**Date Sampled:** 05/27/2003

**Date Received:** 05/27/2003

Sample Type: Water Date Analyzed: 05/27/2003

| Lab Sample Number | Field Number | Field Location                             | Result (pH) |
|-------------------|--------------|--------------------------------------------|-------------|
| 5103              | 3240-01      | MW-1                                       | 7.09        |
| 5104              | 3240-02      | MW-12                                      | 6.72        |
| 5105              | 3240-03      | MW-13                                      | 6.98        |
|                   |              | 14-12-12-12-12-12-12-12-12-12-12-12-12-12- |             |
|                   |              |                                            |             |

ELAP Number 10958 Method: EPA 9040

Comments:

Signature:

# PARADIGM ENVIRONMENTAL

CHAIN OF CUSTODY

| ADDRESS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SERVICES, INC.                   | S                     |            | COMPANY    |                          |              |      |                                                  | ۷   | P. Carlo |      |      |          |      | LAB PROJECT #: |               |       |            |      | • •                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|------------|------------|--------------------------|--------------|------|--------------------------------------------------|-----|----------|------|------|----------|------|----------------|---------------|-------|------------|------|------------------------|
| STATE   STAT   | 79 Lake Avenue                   |                       |            | ADDRESS    | 1010 Conce               |              | ADDI | RESS:                                            |     | 1        |      |      |          |      | 03 13          | 23            |       | M<br>N     | Ž    | را<br>خ                |
| PHONE   FAX:   PHONE   FAX:   PHONE   FAX:   PHONE   FAX:   PHONE   FAX:   PHONE   P   | ochester, NY 1<br>85) 647-2530 * | 1608<br>(800) 724-199 |            | CITY:      | STATE:                   | ZIP:         | CIT  |                                                  |     |          | ST   | ATE: |          | ZIP: | TURNAROUND     | TIME: (WORKIN | NG DA | (S)        |      |                        |
| ATTR:   SCANDELD   ATTR:   A   | ۸X: (585) 64 <i>7-</i> دُ        | 311                   |            | PHONE:     | FAX: 454 0823            |              | 문    | ij                                               |     |          | FAX: |      |          |      | 35.            |               | STD   | )<br>)     | P    | OTHER                  |
| COMMENTS:  SAMPLE LOCATION/FIELD ID  THEOLESTED ANALYSIS  REMARKS  THEOLESTED ANALYSIS  REMARKS  THEOLESTED ANALYSIS  REMARKS  THEOLESTED ANALYSIS  THEOLEST | OJECT NAME/SITE                  | NAME:                 |            | ATTN:      | Jell Danzinge            |              | ATT  | <u> </u>                                         |     |          |      | ,    |          |      | •              | 2 3:          | X     | )<br>Jacon |      | ilog<br>Signi<br>Signi |
| THE PROPERTY SAMPLE LOCATION PELD ID    1500   X 3240-01   Priv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26 (my 35                        | 405.03                |            | COMMEN     | TS:                      |              |      |                                                  |     |          |      |      |          |      |                |               |       |            |      |                        |
| THE DE SAMPLE LOCATION/FIELD ID    500   X 3240-02   Mw-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                       |            |            |                          |              |      |                                                  | REC | UEST     | MAL  | YSIS |          | \    |                |               |       |            |      |                        |
| THE P G SAMPLE LOCATION WHELD ID A W C T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                       | vo         |            |                          |              |      | <del>                                     </del> | 1   | IAAL     | -    |      | <u> </u> |      |                |               |       |            |      |                        |
| TIME S A SAMPLE LOCATION FIELD ID R B A SAMPLE LOCATION FIELD ID R B A A A A A A A C - 01   rm - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                       | <b>2</b> 0 | <b>9</b> 1 |                          | <b>≥</b> ∢ I |      |                                                  |     | Z ()     |      |      | •        |      |                |               |       |            |      |                        |
| 1500 X 3240-01 mm-1 who 4 x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DATE                             | TIME                  | 0 w -      | X 4 W      | SAMPLE LOCATION/FIELD ID | - œ -        |      |                                                  |     | 9Z.P     |      |      |          |      | REMARKS        |               | - vi  | AMPLE      | NUMB | 3ER                    |
| 500 × 3240-01 mm-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                       | - ⊢ ш      |            |                          | × 1          |      |                                                  | 110 | 77L      |      |      |          | •    |                |               |       |            |      |                        |
| 1350 × 3240.62/MW.12 WAV 4 ×× ×   511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/27/03                          | 005                   | ·          | X          | 3240-01 mw-1             | 13           |      |                                                  | ×   | 。<br>人   |      |      |          |      |                |               |       | 7          | 0    | 2                      |
| 1430 X 3240 · 03/mw - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/20/5                          | 1350                  |            | ٨          | 3240-02/MW-12            | 13           |      |                                                  |     | 1        |      |      |          |      |                | •             |       | 5          | 0    | 7                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/22/03                          | 1430                  |            | 人          | 3240 · 03/MW-13          | NAM!         |      |                                                  | ×   | ろ        |      |      |          |      |                |               |       | 5          | ٥    | 2                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |            |            |                          |              |      |                                                  |     |          |      |      |          |      |                |               |       |            |      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |            |            |                          |              |      |                                                  |     |          |      |      |          |      |                |               |       |            |      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |            |            |                          | ŕ            |      |                                                  |     |          |      |      |          |      |                |               |       |            |      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |            |            |                          |              |      |                                                  |     |          |      |      | <u> </u> |      |                |               |       | -          |      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |            |            |                          |              |      |                                                  |     |          |      |      |          |      |                |               |       |            |      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |            |            |                          |              |      |                                                  |     |          |      |      |          |      |                |               |       |            |      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                |                       |            |            |                          |              |      |                                                  |     |          |      |      |          |      |                |               |       |            |      |                        |

| · · · · · · )                                                | Total Cost:         | .:<br>.∰.5<br><br><br> | P.I.F.                   |
|--------------------------------------------------------------|---------------------|------------------------|--------------------------|
| TEMPERATURE:                                                 | Date/Time:          | Date/Time:             | Date/Time: 5/37/63 /(255 |
| HOLDING TIME:                                                |                     |                        | Now                      |
| PRESERVATIONS:                                               | Relinquished By:    | Received By:           | Received @ Lab By:       |
| CONTAINER TYPE:                                              | Date/Time: 5 17 (0) | SIZAON 19              | Date/Time:               |
| SAMPLE CONDITION: Check box if acceptable or note deviation: | Sampled By:         | Relinquished By:       | Received By:             |